424 research outputs found

    The Importance of Age Dependent Mortality and the Extrinsic Incubation Period in Models of Mosquito-Borne Disease Transmission and Control

    Get PDF
    Nearly all mathematical models of vector-borne diseases have assumed that vectors die at constant rates. However, recent empirical research suggests that mosquito mortality rates are frequently age dependent. This work develops a simple mathematical model to assess how relaxing the classical assumption of constant mortality affects the predicted effectiveness of anti-vectorial interventions. The effectiveness of mosquito control when mosquitoes die at age dependent rates was also compared across different extrinsic incubation periods. Compared to a more realistic age dependent model, constant mortality models overestimated the sensitivity of disease transmission to interventions that reduce mosquito survival. Interventions that reduce mosquito survival were also found to be slightly less effective when implemented in systems with shorter EIPs. Future transmission models that examine anti-vectorial interventions should incorporate realistic age dependent mortality rates

    Refined Simulations of the Reaction Front for Diffusion-Limited Two-Species Annihilation in One Dimension

    Full text link
    Extensive simulations are performed of the diffusion-limited reaction A++B→0\to 0 in one dimension, with initially separated reagents. The reaction rate profile, and the probability distributions of the separation and midpoint of the nearest-neighbour pair of A and B particles, are all shown to exhibit dynamic scaling, independently of the presence of fluctuations in the initial state and of an exclusion principle in the model. The data is consistent with all lengthscales behaving as t1/4t^{1/4} as t→∞t\to\infty. Evidence of multiscaling, found by other authors, is discussed in the light of these findings.Comment: Resubmitted as TeX rather than Postscript file. RevTeX version 3.0, 10 pages with 16 Encapsulated Postscript figures (need epsf). University of Geneva preprint UGVA/DPT 1994/10-85

    Tropical Mosquito Assemblages Demonstrate ‘Textbook’ Annual Cycles

    Get PDF
    Background: Annual biological rhythms are often depicted as predictably cyclic, but quantitative evaluations are few and rarely both cyclic and constant among years. In the monsoon tropics, the intense seasonality of rainfall frequently drives fluctuations in the populations of short-lived aquatic organisms. However, it is unclear how predictably assemblage composition will fluctuate because the intensity, onset and cessation of the wet season varies greatly among years. Methodology/Principal Findings: Adult mosquitoes were sampled using EVS suction traps baited with carbon dioxide around swamplands adjacent to the city of Darwin in northern Australia. Eleven sites were sampled weekly for five years, and one site weekly for 24 years, the sample of c. 1.4 million mosquitoes yielding 63 species. Mosquito abundance, species richness and diversity fluctuated seasonally, species richness being highly predictable. Ordination of assemblage composition demonstrated striking annual cycles that varied little from year to year. The mosquito assemblage was temporally structured by a succession of species peaks in abundance. Conclusion/Significance: Ordination provided strong visual representation of annual rhythms in assemblage composition and the means to evaluate variability among years. Because most mosquitoes breed in shallow freshwater which fluctuates with rainfall, we did not anticipate such repeatability; we conclude that mosquito assemblage composition appears adapte

    Nontrivial Exponent for Simple Diffusion

    Full text link
    The diffusion equation \partial_t\phi = \nabla^2\phi is considered, with initial condition \phi( _x_ ,0) a gaussian random variable with zero mean. Using a simple approximate theory we show that the probability p_n(t_1,t_2) that \phi( _x_ ,t) [for a given space point _x_ ] changes sign n times between t_1 and t_2 has the asymptotic form p_n(t_1,t_2) \sim [\ln(t_2/t_1)]^n(t_1/t_2)^{-\theta}. The exponent \theta has predicted values 0.1203, 0.1862, 0.2358 in dimensions d=1,2,3, in remarkably good agreement with simulation results.Comment: Minor typos corrected, affecting table of exponents. 4 pages, REVTEX, 1 eps figure. Uses epsf.sty and multicol.st

    Domain Growth in a 1-D Driven Diffusive System

    Full text link
    The low-temperature coarsening dynamics of a one-dimensional Ising model, with conserved magnetisation and subject to a small external driving force, is studied analytically in the limit where the volume fraction \mu of the minority phase is small, and numerically for general \mu. The mean domain size L(t) grows as t^{1/2} in all cases, and the domain-size distribution for domains of one sign is very well described by the form P_l(l) \propto (l/L^3)\exp[-\lambda(\mu)(l^2/L^2)], which is exact for small \mu (and possibly for all \mu). The persistence exponent for the minority phase has the value 3/2 for \mu \to 0.Comment: 8 pages, REVTeX, 7 Postscript figures, uses multicol.sty and epsf.sty. Submitted to Phys. Rev.

    Controlling invasive rodents via synthetic gene drive and the role of polyandry

    Get PDF
    House mice are a major ecosystem pest, particularly threatening island ecosystems as a non-native invasive species. Rapid advances in synthetic biology offer new avenues to control pest species for biodiversity conservation. Recently, a synthetic sperm-killing gene drive construct called t-Sry has been proposed as a means to eradicate target mouse populations owing to a lack of females. A factor that has received little attention in the discussion surrounding such drive applications is polyandry. Previous research has demonstrated that sperm-killing drivers are extremely damaging to a male’s sperm competitive ability. Here, we examine the importance of this effect on the t-Sry system using a theoretical model. We find that polyandry substantially hampers the spread of t-Sry such that release efforts have to be increased three- to sixfold for successful eradication. We discuss the implications of our finding for potential pest control programmes, the risk of drive spread beyond the target population, and the emergence of drive resistance. Our work highlights that a solid understanding of the forces that determine drive dynamics in a natural setting is key for successful drive application, and that exploring the natural diversity of gene drives may inform effective gene drive design
    • …
    corecore